V = 2326.2 (3) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.36 \times 0.28 \text{ mm}$

2723 independent reflections 2362 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.024$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

10*α*-Hydroxy-4,9-dimethyl-13-[(4phenylpiperazin-1-yl)methyl]-3,8,15trioxatetracyclo[10.3.0.0^{2,4}.0^{7,9}]tetradecan-14-one

Mohamed Moumou,^a Ahmed Benharref,^a Abdelghani Oudahmane,^b Ahmed Elhakmaoui^c* and Moha Berraho^a

^aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, ^bUniversite Blaise Pascal, Laboratoire des Mate'riaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubiere, France, and ^cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco Correspondence e-mail: mberraho@yahoo.fr

Received 3 October 2011; accepted 11 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.104; data-to-parameter ratio = 9.3.

The title compound, $C_{25}H_{34}N_2O_5$, was synthesized from 9α -hydroxyparthenolide (9α -hydroxy-4,8-dimethyl-12-methylene-3,14-dioxatricyclo[$9.3.0.0^{2.4}$]tetradec-7-en-13-one), which was isolated from the chloroform extract of the aerial parts of *Anvillea radiata*. The molecule contains a fused five- and ten-membered ring system. The ten-membered ring adopts an approximate chair-chair conformation, while the fivemembered ring is in an envelope conformation, with the C atom closest to the hydroxy group forming the flap. The piperazine ring is in a chair conformation. In the crystal, O-H···O hydrogen bonds connect molecules into chains along [100]. Weak intermolecular C-H···O hydrogen bonds are also present.

Related literature

For background to the medicinal uses of the plant *Anvillea radiata*, see: Abdel Sattar *et al.* (1996); Bellakhdar (1997); El Hassany *et al.* (2004). For the reactivity of this sesquiterpene, see: Hwang *et al.* (2006); Neukirch *et al.* (2003); Neelakantan *et al.* (2009). For the synthesis, see: Moumou *et al.* (2010). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $\begin{array}{l} C_{25}H_{34}N_2O_5\\ M_r = 442.54\\ Orthorhombic, P2_12_12_1\\ a = 7.7666 \ (5) \ \text{\AA}\\ b = 9.6059 \ (8) \ \text{\AA}\\ c = 31.181 \ (2) \ \text{\AA} \end{array}$

Data collection

Bruker X8 APEX CCD area-
detector diffractometer
10922 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 293 parameters $wR(F^2) = 0.104$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ 2723 reflections $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} 04 - H4 \cdots O2^{i} \\ C14 - H14B \cdots O5^{ii} \\ C21 - H21 \cdots O1^{iii} \end{array}$	0.82	2.11	2.902 (3)	161
	0.96	2.59	3.289 (3)	129
	0.93	2.51	3.441 (4)	174

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia,1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5350).

References

Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. **59**, 403–405. Bellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). *Fitoterapia*, **75**, 573–576.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). *Bioorg. Med. Chem.* **14**, 83–91.
- Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, 02395.
- Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). *Bioorg. Med. Chem. Lett.* **19**, 4346–4349.
- Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). *Bioorg. Med. Chem.* **11**, 1503–1510.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2011). E67, o2981-o2982 [doi:10.1107/S1600536811042012]

10α-Hydroxy-4,9-dimethyl-13-[(4-phenylpiperazin-1-yl)methyl]-3,8,15trioxatetracyclo[10.3.0.0^{2,4}.0^{7,9}]tetradecan-14-one

M. Moumou, A. Benharref, A. Oudahmane, A. Elhakmaoui and M. Berraho

Comment

The natural sesquiterpene lactone, 9α - hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of *Anvillea radiata* (El Hassany *et al.*, 2004) and of *Anvillea garcini* (Abdel Sattar *et al.*, (1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Neukirch *et al.*, 2003; Hwang *et al.*, 2006; Neelakantan *et al.*, 2009), in order to prepare products of value which can be used in the pharmacological industry. In this context, we have synthesed from 9α -hydroxyparthenolide the 6β , 7α - epoxy-9apha hydoxy partenolide (9α -hydroxy-4,8-dimethyl-12- methylen-3,14-dioxa-tricyclo[$9.3.0.0^2$,⁴]tetradec-7-en-13-one) (Moumou *et al.*, 2010) and then prepared the title compound (I). The crystal structure of (I) is determined herein. The molecule contains a fused ring system and phenylpiperazine group as a substituent to a lactone ring. The molecular structure, Fig.1, shows that the lactone ring adopts an envelope conformation, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.347 (2)Å and $\varphi = 75.6$ (3)°. The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.570 (2) Å, $\theta = 180.0$ (2)° and $\varphi = 150$ (10)°. In the crystal structure, molecules are connected through O—H···O hydrogen bonds (Fig.2), forming chains along [100].

Experimental

A mixture of 6β , 7α -epoxy- 9α -hydoxypartenolide (9α -hydroxy-4, 8-dimethyl-12- methylen-3, 14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one) (0.5 g, 2 mmol) and one equivalent of 1-phenylpiperazine in EtOH (20 ml) was stirred for twelve hours at room temperature. Then the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3×20 ml). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under vacuum to give 895 mg (1.8 mmol) of the title compound, which was recrystallized in ethyl acetate.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine), O—H = 0.82Å and with $U_{iso}(H) = 1.2U_{eq}$ (methylene, methine) or $U_{iso}(H) = 1.5U_{eq}$ (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus the Friedel pairs were merged.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Packing view showing O–H…O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

$10 \alpha Hydroxy-4,9-dimethyl-13-[(4-phenylpiperazin-1-yl)methyl]-3,8,15-trioxatetracyclo[10.3.0.0^{2,4}.0^{7,9}] tetradecan-14-one$

F(000) = 952 $D_{\rm x} = 1.264 \text{ Mg m}^{-3}$

 $\theta = 2.7-26.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KPrism, colourless $0.45 \times 0.36 \times 0.28 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 10922 reflections

Crystal data

C ₂₅ H ₃₄ N ₂ O ₅
$M_r = 442.54$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 7.7666 (5) Å
<i>b</i> = 9.6059 (8) Å
<i>c</i> = 31.181 (2) Å
$V = 2326.2 (3) \text{ Å}^3$
Z = 4

Data collection

diffractometer 2362 reflections with $I > 2\sigma(I)$	
Radiation source: fine-focus sealed tube $R_{\text{int}} = 0.024$	
graphite $\theta_{max} = 26.4^\circ, \ \theta_{min} = 2.7^\circ$	
φ and ω scans $h = -9 \rightarrow 9$	
10922 measured reflections $k = -11 \rightarrow 7$	
2723 independent reflections $l = -38 \rightarrow 34$	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.104$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.4378P]$ where $P = (F_o^2 + 2F_c^2)/3$
2723 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
293 parameters	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.5441 (3)	0.2316 (2)	0.91768 (7)	0.0347 (5)
H1	0.4879	0.1665	0.8979	0.042*
C2	0.5370 (3)	0.1777 (2)	0.96267 (7)	0.0327 (5)
H2	0.6143	0.2252	0.9827	0.039*
C3	0.4930 (3)	0.0341 (3)	0.97477 (7)	0.0349 (5)
C4	0.5705 (3)	-0.0184 (3)	1.01607 (8)	0.0415 (6)
H4A	0.4920	-0.0840	1.0293	0.050*
H4B	0.5859	0.0591	1.0356	0.050*
C5	0.7438 (3)	-0.0892 (3)	1.00857 (8)	0.0435 (6)
H5A	0.7981	-0.1076	1.0360	0.052*
H5B	0.7252	-0.1777	0.9943	0.052*
C6	0.8616 (3)	-0.0009 (3)	0.98170 (8)	0.0383 (6)
H6	0.8588	0.0985	0.9888	0.046*
C7	0.9154 (3)	-0.0312 (3)	0.93753 (8)	0.0383 (6)
C8	0.9740 (3)	0.0848 (3)	0.90772 (8)	0.0404 (6)
H8	1.0567	0.0437	0.8876	0.048*
C9	0.8307 (4)	0.1514 (3)	0.88067 (8)	0.0416 (6)
H9A	0.7518	0.0783	0.8720	0.050*
H9B	0.8825	0.1885	0.8548	0.050*
C10	0.7253 (3)	0.2680 (2)	0.90184 (7)	0.0311 (5)
H10	0.7914	0.3042	0.9262	0.037*
C11	0.5317 (3)	0.4573 (3)	0.89329 (8)	0.0414 (6)
C12	0.6839 (3)	0.3904 (3)	0.87154 (7)	0.0376 (6)
H12	0.6455	0.3523	0.8440	0.045*
C13	0.8251 (4)	0.4953 (3)	0.86298 (8)	0.0431 (6)
H13A	0.7729	0.5793	0.8516	0.052*
H13B	0.8786	0.5194	0.8901	0.052*
C14	0.4374 (4)	-0.0747 (3)	0.94329 (9)	0.0473 (6)
H14A	0.3988	-0.0306	0.9174	0.071*
H14B	0.3451	-0.1284	0.9554	0.071*
H14C	0.5328	-0.1349	0.9369	0.071*
C15	1.1040 (4)	0.5453 (3)	0.83687 (8)	0.0519 (7)
H15A	1.1452	0.5467	0.8662	0.062*
H15B	1.0668	0.6387	0.8295	0.062*
C16	0.9013 (3)	0.4473 (3)	0.78904 (8)	0.0490 (7)
H16A	0.8618	0.5393	0.7808	0.059*
H16B	0.8051	0.3836	0.7864	0.059*
C17	1.0437 (4)	0.4021 (3)	0.75924 (8)	0.0509 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17A	1.0794	0.3082	0.7664	0.061*
H17B	1.0018	0.4018	0.7299	0.061*
C18	1.2483 (4)	0.5027 (4)	0.80761 (8)	0.0542 (8)
H18A	1.3418	0.5691	0.8100	0.065*
H18B	1.2915	0.4122	0.8163	0.065*
C19	1.3260 (4)	0.4797 (3)	0.73301 (8)	0.0448 (6)
C20	1.3357 (4)	0.3688 (3)	0.70444 (8)	0.0473 (6)
H20	1.2490	0.3020	0.7040	0.057*
C21	1.4749 (4)	0.3575 (4)	0.67644 (8)	0.0571 (8)
H21	1.4797	0.2835	0.6573	0.069*
C22	1.6044 (4)	0.4538 (4)	0.67685 (9)	0.0645 (9)
H22	1.6992	0.4434	0.6589	0.077*
C23	1.5932 (4)	0.5657 (4)	0.70384 (10)	0.0714 (10)
H23	1.6792	0.6331	0.7035	0.086*
C24	1.4562 (4)	0.5797 (4)	0.73158 (9)	0.0615 (8)
H24	1.4503	0.6568	0.7496	0.074*
C26	0.8708 (4)	-0.1630(3)	0.91409 (9)	0.0535 (7)
H26A	0.8222	-0.2288	0.9338	0.080*
H26B	0.9730	-0.2015	0.9015	0.080*
H26C	0.7886	-0.1428	0.8919	0.080*
N1	0.9589 (3)	0.4506 (2)	0.83356 (6)	0.0398 (5)
N2	1.1901 (3)	0.4959 (2)	0.76275 (6)	0.0461 (6)
01	0.4819 (3)	0.5750 (2)	0.89055 (6)	0.0565 (5)
02	0.3686 (2)	0.14622 (18)	0.97984 (5)	0.0400 (4)
O3	0.4524 (2)	0.36458 (19)	0.91853 (5)	0.0447 (4)
05	1.0321 (2)	-0.0547 (2)	0.97319 (6)	0.0543 (5)
O4	1.0600 (2)	0.19268 (19)	0.92937 (7)	0.0538 (5)
H4	1.1392	0.1600	0.9436	0.081*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0319 (12)	0.0320 (12)	0.0403 (12)	-0.0020 (11)	-0.0021 (11)	0.0019 (10)
C2	0.0281 (11)	0.0336 (12)	0.0364 (11)	-0.0008 (11)	0.0030 (10)	0.0008 (9)
C3	0.0274 (11)	0.0351 (12)	0.0421 (12)	-0.0020 (10)	0.0068 (10)	0.0002 (10)
C4	0.0464 (14)	0.0380 (13)	0.0402 (12)	-0.0040 (12)	0.0048 (11)	0.0072 (11)
C5	0.0486 (14)	0.0374 (14)	0.0446 (13)	0.0030 (12)	-0.0051 (12)	0.0065 (11)
C6	0.0304 (12)	0.0343 (13)	0.0502 (13)	0.0040 (11)	-0.0070 (11)	-0.0018 (11)
C7	0.0330 (12)	0.0338 (13)	0.0479 (13)	0.0062 (11)	-0.0035 (11)	-0.0007 (11)
C8	0.0326 (12)	0.0363 (13)	0.0522 (14)	0.0066 (11)	0.0058 (11)	-0.0029 (11)
C9	0.0485 (15)	0.0362 (13)	0.0401 (12)	0.0049 (13)	0.0062 (12)	0.0012 (11)
C10	0.0303 (12)	0.0302 (12)	0.0328 (11)	-0.0005 (10)	-0.0014 (9)	0.0020 (9)
C11	0.0404 (13)	0.0420 (14)	0.0417 (13)	0.0051 (13)	-0.0057 (11)	0.0079 (11)
C12	0.0414 (13)	0.0336 (13)	0.0377 (12)	0.0019 (11)	-0.0008 (11)	0.0024 (10)
C13	0.0503 (14)	0.0352 (13)	0.0438 (13)	-0.0031 (13)	0.0073 (12)	0.0012 (11)
C14	0.0444 (14)	0.0394 (15)	0.0582 (15)	-0.0041 (13)	0.0002 (13)	-0.0033 (12)
C15	0.0527 (16)	0.0597 (18)	0.0434 (13)	-0.0120 (16)	0.0041 (12)	-0.0116 (13)
C16	0.0419 (14)	0.0639 (18)	0.0413 (13)	-0.0058 (15)	-0.0014 (11)	0.0009 (13)

C17	0.0485 (15)	0.0646 (18)	0.0396 (13)	-0.0098 (16)	-0.0015 (12)	-0.0086 (13)
C18	0.0467 (14)	0.073 (2)	0.0431 (13)	-0.0101 (15)	0.0003 (12)	-0.0112 (15)
C19	0.0479 (14)	0.0498 (15)	0.0368 (12)	-0.0031 (14)	0.0010 (11)	0.0005 (12)
C20	0.0538 (16)	0.0476 (15)	0.0403 (13)	-0.0030 (15)	0.0013 (13)	0.0019 (12)
C21	0.069 (2)	0.0614 (18)	0.0413 (14)	0.0143 (19)	0.0050 (14)	0.0000 (14)
C22	0.0538 (18)	0.098 (3)	0.0419 (15)	0.003 (2)	0.0075 (13)	0.0051 (17)
C23	0.0574 (19)	0.099 (3)	0.0578 (18)	-0.030 (2)	0.0051 (16)	0.0013 (19)
C24	0.0633 (18)	0.068 (2)	0.0528 (16)	-0.0199 (19)	0.0080 (15)	-0.0106 (15)
C26	0.0663 (19)	0.0335 (14)	0.0608 (16)	0.0041 (14)	0.0044 (15)	-0.0079 (13)
N1	0.0409 (11)	0.0424 (12)	0.0362 (10)	-0.0028 (11)	0.0019 (9)	-0.0001 (9)
N2	0.0454 (12)	0.0543 (14)	0.0386 (10)	-0.0091 (12)	0.0029 (10)	-0.0090 (10)
01	0.0590 (12)	0.0477 (11)	0.0627 (11)	0.0188 (11)	0.0078 (10)	0.0146 (9)
O2	0.0310 (8)	0.0414 (9)	0.0477 (9)	0.0018 (8)	0.0081 (7)	0.0000 (8)
O3	0.0333 (9)	0.0458 (10)	0.0548 (10)	0.0089 (9)	0.0045 (8)	0.0136 (9)
O5	0.0371 (10)	0.0594 (12)	0.0662 (12)	0.0123 (10)	-0.0069 (9)	0.0060 (10)
04	0.0350 (10)	0.0429 (11)	0.0834 (14)	-0.0036 (9)	-0.0090 (10)	0.0003 (10)

Geometric parameters (Å, °)

C1—O3	1.463 (3)	С13—Н13А	0.9700
C1—C2	1.496 (3)	С13—Н13В	0.9700
C1—C10	1.532 (3)	C14—H14A	0.9600
С1—Н1	0.9800	C14—H14B	0.9600
C2—O2	1.445 (3)	C14—H14C	0.9600
C2—C3	1.471 (3)	C15—N1	1.452 (3)
С2—Н2	0.9800	C15—C18	1.502 (4)
C3—O2	1.456 (3)	C15—H15A	0.9700
C3—C14	1.497 (4)	C15—H15B	0.9700
C3—C4	1.508 (3)	C16—N1	1.459 (3)
C4—C5	1.526 (4)	C16—C17	1.508 (4)
C4—H4A	0.9700	C16—H16A	0.9700
C4—H4B	0.9700	C16—H16B	0.9700
C5—C6	1.503 (4)	C17—N2	1.455 (3)
С5—Н5А	0.9700	С17—Н17А	0.9700
С5—Н5В	0.9700	С17—Н17В	0.9700
C6—O5	1.446 (3)	C18—N2	1.471 (3)
C6—C7	1.468 (3)	C18—H18A	0.9700
С6—Н6	0.9800	C18—H18B	0.9700
С7—О5	1.452 (3)	C19—C20	1.390 (4)
C7—C26	1.502 (4)	C19—C24	1.395 (4)
С7—С8	1.521 (4)	C19—N2	1.414 (3)
C8—O4	1.406 (3)	C20—C21	1.394 (4)
C8—C9	1.536 (3)	С20—Н20	0.9300
C8—H8	0.9800	C21—C22	1.367 (5)
C9—C10	1.537 (3)	C21—H21	0.9300
С9—Н9А	0.9700	C22—C23	1.368 (5)
С9—Н9В	0.9700	С22—Н22	0.9300
C10—C12	1.542 (3)	C23—C24	1.378 (4)
C10—H10	0.9800	С23—Н23	0.9300

C11 01	1 108 (3)	C24 H24	0.9300
C1101	1 339 (3)	C24—H26A	0.9500
	1.557(3)	C26 H26R	0.9600
$C_{11} = C_{12}$	1.507(3)	C26_H26C	0.9000
C12—C13	0.0800	04 14	0.9000
C12—H12	0.9800	04—H4	0.8200
C13—INI	1.431 (5)		
O3—C1—C2	105.50 (18)	N1—C13—H13A	108.4
O3—C1—C10	104.70 (18)	C12—C13—H13A	108.4
C2—C1—C10	114.50 (19)	N1—C13—H13B	108.4
O3—C1—H1	110.6	С12—С13—Н13В	108.4
C2—C1—H1	110.6	H13A—C13—H13B	107.4
C10—C1—H1	110.6	C3—C14—H14A	109.5
O2—C2—C3	59.88 (14)	C3—C14—H14B	109.5
O2—C2—C1	116.93 (19)	H14A—C14—H14B	109.5
C3—C2—C1	125.0 (2)	C3—C14—H14C	109.5
O2—C2—H2	114.5	H14A—C14—H14C	109.5
С3—С2—Н2	114.5	H14B—C14—H14C	109.5
С1—С2—Н2	114.5	N1-C15-C18	111.4 (2)
O2—C3—C2	59.19 (15)	N1-C15-H15A	109.3
O2—C3—C14	113.4 (2)	C18—C15—H15A	109.3
C2—C3—C14	123.6 (2)	N1—C15—H15B	109.3
O2—C3—C4	114.79 (19)	C18—C15—H15B	109.3
C2—C3—C4	116.1 (2)	H15A—C15—H15B	108.0
C14—C3—C4	116.2 (2)	N1-C16-C17	111.6 (2)
C3—C4—C5	111.7 (2)	N1—C16—H16A	109.3
C3—C4—H4A	109.3	С17—С16—Н16А	109.3
C5—C4—H4A	109.3	N1—C16—H16B	109.3
C3—C4—H4B	109.3	С17—С16—Н16В	109.3
C5—C4—H4B	109.3	H16A—C16—H16B	108.0
H4A—C4—H4B	107.9	N2—C17—C16	110.4 (2)
C6—C5—C4	111.8 (2)	N2—C17—H17A	109.6
С6—С5—Н5А	109.3	С16—С17—Н17А	109.6
C4—C5—H5A	109.3	N2—C17—H17B	109.6
С6—С5—Н5В	109.3	С16—С17—Н17В	109.6
C4—C5—H5B	109.3	Н17А—С17—Н17В	108.1
H5A—C5—H5B	107.9	N2—C18—C15	111.1 (2)
O5—C6—C7	59.77 (15)	N2—C18—H18A	109.4
05—C6—C5	117.3 (2)	C15-C18-H18A	109.4
C7 - C6 - C5	125.7(2)	N2-C18-H18B	109.4
05—C6—H6	114 2	C15-C18-H18B	109.4
C7—C6—H6	114.2	H18A—C18—H18B	108.0
C5-C6-H6	114.2	C_{20} C_{19} C_{24}	117.9(3)
05 - 07 - 06	59 36 (15)	$C_{20} = C_{19} = N_2$	1230(2)
05—C7—C26	112.7 (2)	C_{24} C_{19} N_{2}	119 1 (2)
C6-C7-C26	123.9(2)	$C_{19} - C_{20} - C_{21}$	1202(3)
05-07-08	113 3 (2)	C19_C20_H20	110.2 (3)
C5 C7-C8	113.3(2) 120.8(2)	C21_C20_H20	110.0
$C_{1} = C_{1} = C_{0}$	120.0(2)	$C_{21} - C_{20} - 1120$	117.7
$(20-0)^{-0}$	112.9(2)	$C_{22} = C_{21} = C_{20}$	120.8 (3)
U4—Uð—U/	112.9 (2)	C22—C21—H21	119.0

O4—C8—C9	107.5 (2)	C20-C21-H21	119.6
С7—С8—С9	115.1 (2)	C21—C22—C23	119.4 (3)
O4—C8—H8	107.0	C21—C22—H22	120.3
С7—С8—Н8	107.0	С23—С22—Н22	120.3
С9—С8—Н8	107.0	C22—C23—C24	120.8 (3)
C8—C9—C10	117.0 (2)	С22—С23—Н23	119.6
С8—С9—Н9А	108.0	С24—С23—Н23	119.6
С10—С9—Н9А	108.0	C23—C24—C19	120.8 (3)
С8—С9—Н9В	108.0	C23—C24—H24	119.6
С10—С9—Н9В	108.0	C19—C24—H24	119.6
Н9А—С9—Н9В	107.3	C7—C26—H26A	109.5
C1—C10—C9	117.5 (2)	С7—С26—Н26В	109.5
C1—C10—C12	100.36 (18)	H26A—C26—H26B	109.5
C9—C10—C12	113.83 (19)	С7—С26—Н26С	109.5
C1-C10-H10	108.2	H26A—C26—H26C	109.5
С9—С10—Н10	108.2	H26B—C26—H26C	109.5
С12—С10—Н10	108.2	C13—N1—C15	108.97 (19)
O1—C11—O3	121.5 (2)	C13—N1—C16	112.8 (2)
O1—C11—C12	128.6 (2)	C15—N1—C16	108.6 (2)
O3—C11—C12	109.9 (2)	C19—N2—C17	117.8 (2)
C11—C12—C13	111.3 (2)	C19—N2—C18	113.5 (2)
C11—C12—C10	102.31 (19)	C17—N2—C18	109.8 (2)
C13—C12—C10	117.7 (2)	C2—O2—C3	60.93 (15)
C11—C12—H12	108.4	C11—O3—C1	110.30 (18)
С13—С12—Н12	108.4	C6—O5—C7	60.87 (15)
C10—C12—H12	108.4	C8—O4—H4	109.5
N1—C13—C12	115.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O4—H4···O2 ⁱ	0.82	2.11	2.902 (3)	161
C14—H14B···O5 ⁱⁱ	0.96	2.59	3.289 (3)	129
C21—H21···O1 ⁱⁱⁱ	0.93	2.51	3.441 (4)	174
Symmetry codes: (i) $x+1$, y , z ; (ii) $x-1$, y , z ; (iii) $-x+2$, $y-1/2$, $-z+3/2$.				

Fig. 1

Fig. 2